
Network Design
GonçaloMartins

Class Notes Support

First Edition: October 2020

www.engredu.com

www.engredu.com

Contents

1 Python Program Concepts 1
1.1 Environment Setup 2
1.2 Getting & Installing Python 2
1.3 Running Python . 3
1.4 Python Fundamental Concepts 4

2 Python for Network Engineers 15
2.1 Encoding & Decoding 15
2.2 Shifting Bytes . 18
2.3 Struct Package . 20
2.4 Other Functions 25

3 Python Socket Vocabulary 27
3.1 Creating Sockets 28
3.2 Sending Data . 29
3.3 Receiving Data . 30
3.4 Socket Objects . 31
3.5 Socket Services . 35

4 Programming with Sockets 37
4.1 Working with UDP sockets 39
4.2 Working with TCP sockets 43

5 Concurrency 47
5.1 Multithreading Server 49

Network Design

5.2 Event Driven Server 57

6 Packet Analyzer 64
6.1 Basic Sniffer . 66
6.2 Turtle Sniffer . 72

A Basic Sniffer Code 94

B Turtle Sniffer Code 96

ii

1
Python Program Concepts

Python is a general-purpose interpreted, interactive, object-oriented,
and high-level programming language. �is chapter provides enough
understanding on Python programming language in order to use it to
study and program network concepts.

To take the best out of these notes, you should have a basic under-
standing of Computer Programming terminologies. A basic understand-
ing of any of the programming languages is a plus.

tutorialspoint.com - Learn Python 3

Reference Link

https://www.tutorialspoint.com/python3/python_decision_making.htm

1.3.0

1.1 Environment Setup

We will be using python 3 throughout the chapters examples. Open a
terminal window and type "python3" to find out if it is already installed
and which version is installed.

Figure 1.1:Windows Terminal

1.2 Getting& Installing Python

�emost up-to-date and current source code, binaries, documentation,
news, etc., is available on the official website of Python https://www.
python.org/

You can download Python documentation from https://www.python.

org/doc/. �edocumentation is available inHTML,PDF, andPostscript
formats.

Python distribution is available for a wide variety of platforms. You need
to download only the binary code applicable for your platform and install
Python.

2

https://www.python.org/
https://www.python.org/
https://www.python.org/doc/
https://www.python.org/doc/

Python Program Concepts

1.3 Running Python

�ere are three different ways to start Python.

Command Line

You can start Python from Unix, DOS, or any other system that provides
you a command-line interpreter or shell window.

Enter python the command line (Figure 1.1) and start coding right away
in the interactive interpreter.

Script fromCommand Line

A Python script can be executed at command line by invoking the inter-
preter on your application, as in the Figure 1.2

Figure 1.2: Run Script fromCommand Line

IntegratedDevelopment Environment (IDE)

Youcan runPython fromaGraphicalUser Interface (GUI) environment as
well, if you have a GUI application on your system that supports Python.

All the examples given in subsequent chapters are executed with Python
3.7.3 version available onWindows using IDLE IDE.

3

1.4.0

Figure 1.3: IDLE

1.4 Python Fundamental Concepts

Assuming that you have some exposure in the past to any type of pro-
gramming language, let’s review some programming concepts using
python.

Variables

Variables are nothing but reservedmemory locations to store values. �is
means thatwhen you create a variable you reserve some space inmemory.

Based on the data type of a variable, the interpreter allocates memory
and decides what can be stored in the reservedmemory. �erefore, by as-
signing different data types to variables, you can store integers, decimals
or characters in these variables.

Data Types

Python has five standard data types

• Numbers: Python 3 supports three different numerical types.

4

Python Program Concepts

>> number = 5 #int

>> number = 0xFF #int(hex)

>> number = 5.5 #float

>> number = 1 + 5j #complex

• String: a set of characters represented in the quotation marks.

>> str = "String Variable"

• List: contains items separated by commas and enclosed within
square brackets.

>> list = [’abcd’, 786, 2.23, ’john’, 70.2]

>> tinylist = [123, ’john’]

• Tuple: consists of a number of values separated by commas. Unlike
lists, however, tuples are enclosed within parentheses.

>> tuple = (’abcd’, 786, 2.23, ’john’, 70.2)

>> tinytuple = (123, ’john’)

• Dictionary: are kind of hash table type.

>> dict = {’name’:’john’,

’code’:6734,

’dept’:’sales’}

5

1.4.0

List vs Tuple

�e main differences between lists and tuples are: Lists are en-
closed in brackets ([]) and their elements and size canbe changed,
while tuples are enclosed in parentheses (()) and cannot be up-
dated. Tuples can be thought of as read-only lists.

Sometimes, you may need to perform conversions between the built-
in types. To convert between types, you simply use the type name as a
function.

�ere are several built-in functions to perform conversion from one data
type to another. �ese functions return a new object representing the
converted value.

>> number = 5 #int

>> str(number) #int to string

>> hex(number) #int to hex string

>> float(number) #int to float

>> str = "10" #string

>> int(str) #string to int

Basic Operations

Operators are the constructs,which canmanipulate the valueof operands.
Consider the expression 4 + 5 = 9. Here, 4 and 5 are called the operands
and + is called the operator.

Python language supports the following types of operators:

Arithmetic Operators

6

Python Program Concepts

>> a = 10

>> b = 20

>> a + b #addition

>> a - b #subtraction

>> a * b #multiplication

>> a / b #division

>> a % b #modulus

>> a**b #exponent

>> a//b #floor division

ComparisonOperators
�ese operators compare the values on either side of them and decide
the relation among them. �ey are also called Relational operators.

>> a = 10

>> b = 20

>> (a == b) #equal

>> (a != b) #not equal

>> (a > b) #greater than

>> (a < b) #less than

>> (a >= b) #greater than or equal

>> (a <= b) #less than or equal

Assignment Operators

7

1.4.0

>> a = 10

>> b = 20

>> c = a + b #assign

>> c += a #c = c + a

>> c *= a #c = c * a

>> c /= a #c = c / a

>> c %= a #c = c % a

>> c **= a #c = c ** a

>> c //= a #c = c // a

Bitwise Operators
Bitwise operator works on bits and performs bit-by-bit operation.

>> a = 60 # 0011 1100

>> b = 13 # 0000 1101

>> (a & b) # 0000 1100

>> (a | b) # 0011 1101

>> (a ^ b) # 0011 0001

>> (~a) # 1100 0011

>> a << 2 # 1111 0000

>> a >> 2 # 0000 1111

Python’s built-in function bin() can be used to obtain binary representa-
tion of an integer number.

8

Python Program Concepts

>> a = 60 # 0011 1100

>> bin(a)

’0b111100’

Logical Operators
Assume variable a holds True and variable b holds False

>> (a and b) #returns False

>> (a or b) #returns True

>> Not(a and b) #returns True

Membership Operators
Python’s membership operators test for membership in a sequence, such
as strings, lists, or tuples. �ere are twomembership operators.

>> x in y

>> x not in y

Identity Operators
Identity operators compare the memory locations of two objects. �ere
are two Identity operators.

>> x is y

>> x is not y

9

1.4.0

DecisionMakers

Decision-making is the anticipation of conditions occurring during the
execution of a program and specified actions taken according to the
conditions.

Following is the general formof a typical decisionmaking structure found
in most of the programming languages.

Figure 1.4: DecisionMaking

>> var = 100

>> if var == 100:

... print("True")

...else:

... print("False")

10

Python Program Concepts

Loops

In general, statements are executed sequentially �e first statement in a
function is executed first, followed by the second, and so on. �ere may
be a situation when you need to execute a block of code several number
of times.

Programming languages provide various control structures that allow
more complicated execution paths.

A loop statement allows us to execute a statement or group of statements
multiple times. �e following diagram illustrates a loop statement

Figure 1.5: Loops

Python programming language provides the following types of loops to
handle looping requirements:

While Loop

11

1.4.0

Repeats a statement or group of statements while a given condition is
TRUE. It tests the condition before executing the loop body.

>> n = 0

>> while n < 10:

... n += 1

... print(n)

...print("Done.")

>>

For Loop

Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

>> list = [1, 2, 3, 4]

#this builds an iterator object

>> it = iter(list)

>> for x in it:

... print(x, end=" ")

>>

Loop Control Statements

�e Loop control statements change the execution from its normal se-
quence. When the execution leaves a scope, all automatic objects that
were created in that scope are destroyed.

12

Python Program Concepts

>> break # terminates the loop

>> continue # causes the loop to skip

the remainder of its body

>> pass # you don’t want any command

or code to execute

Functions

A function is a block of organized, reusable code that is used to perform
a single, related action. Functions provide better modularity for your
application and a high degree of code reusing.

As youalreadyknow, Pythongives youmanybuilt-in functions likeprint(),
etc. but you can also create your own functions. �ese functions are called
user-defined functions.

User Defined Functions Example

13

1.4.0

#!/usr/bin/python3

Print string

def printme(str):

print("Print me: " + str)

return

Add a to b

def sum(a, b):

Add both the parameters and return them.

total = a + b

print ("Sum function: ", total)

return total

result = sum(10, 20)

printme(str(result))

14

2
Python for Network Engineers

Once we start writing code with sockets you will notice that information
is sent in bytes. However, sometimes we need to print exchanged infor-
mation to the user in a friendly format or we need to capture information
given by the user and send the respective bytes over the network. We
also might need to manipulate bits around in order to extract specific
information from the socket data.

�is section covers some useful python functions that are going to be
used in subsequent chapters.

2.1 Encoding&Decoding

Today’s programs need to be able to handle a wide variety of characters.
Applications are often internationalized to display messages and output
in a variety of user-selectable languages; the same programmight need
to output an error message in English, French, Japanese, Hebrew, or
Russian. Web content can be written in any of these languages and
can also include a variety of emoji symbols. Python’s string type uses

2.1.0

the Unicode Standard for representing characters, which lets Python
programs work with all these different possible characters.

Unicode is a specification that aims to list every character used by human
languages and give each character its own unique code. �e Unicode
specifications are continually revised and updated to add new languages
and symbols.

To represent a unicode string as a string of bytes is known as encoding.
To convert a string of bytes to a unicode string is known as decoding.
You typically encode a unicode string whenever you need to use it for
IO, for instance transfer it over the network, or save it to a disk file. You
typically decode a string of bytes whenever you receive string data from
the network or from a disk file.

UTF-8 is one of the most commonly used encodings, and Python often
defaults to using it. UTF stands for “Unicode Transformation Format”,
and the ‘8’ means that 8-bit values are used in the encoding. (�ere are
also UTF-16 andUTF-32 encodings, but they are less frequently used than
UTF-8.) [Reference]

Now that we reviewed the rudiments of Unicode, we can look at Python’s
Unicode features.

String

Since Python 3.0, the language’s str type contains Unicode characters,
meaning any string created using "unicode rocks!", ’unicode rocks!’, or
the triple-quoted string syntax is stored as Unicode.

16

https://www.unicode.org/
https://docs.python.org/3/howto/unicode.html

Python for Network Engineers

String message

msg_1 = "Hello World!"

msg_2 = ’Hello World!’

Bytes to String

We can create a string using the decode() method of bytes. �is method
takes an encoding argument, such as UTF-8, and optionally an errors
argument.

Receive data from socket

data = conn.recv(1024)

Convert bytes to string

msg = data.decode("utf-8")

String to Bytes

�e opposite method of bytes.decode() is str.encode(), which returns a
bytes representation of the Unicode string, encoded in the requested
encoding.

17

2.2

String message

msg = "Hello World!"

Convert string to bytes

data = msg.encode("utf-8")

Send data to socket

conn.send(data)

2.2 Shifting Bytes

Python supports a range of types to store sequences. �ere are six se-
quence types: strings, byte sequences (bytes objects), byte arrays (bytear-
ray objects), lists, tuples, and range objects.

Notice that you can’t manipulate bytes on integers by itself. �ey need to
be part of a list or tuple or range of objects.

Let’s go over an example and see how canwe shift bits with integer values.

We create a list (L) with one integer element (15) and we print the respec-
tive types.

>> L = [15]

>> print(type(L))

<class ’list’>

>> print(type(L[0]))

<class ’int’>

18

Python for Network Engineers

Using the functionbytes() to the list, it returns anew "bytes" object,which
is an immutable sequence of small integers in the range 0 <= x < 256,
print as ASCII characters when displayed. �e number 15 is not a visible
character so it prints the respective in hexadecimal number - 0x0f.

>> print(bytes(L))

b’\x0f’

>> print(bytes(L[0]))

b’\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00’

However, when bytes() is applied to the integer itself, it creates a byte
object with that size - in this case it creates 15 bytes.

To shift bits to the left or to the right, apply ’«’ or ’»’ respectively to the list
element itself.

>> L[0] = L[0] >> 2

>> print(bytes(L))

b’\x03’

>> L[0] = L[0] << 1

>> print(bytes(L))

b’\x06’

You can apply any bitwise operator described in Chapter 1.

19

2.3.0

>> L[0] |= 1

>> print(bytes(L))

b’\x07’

2.3 Struct Package

�ismodule performs conversions between Python values and C structs
represented as Python bytes objects. �is can be used in handling binary
data stored in files or from network connections, among other sources.
It uses Format Strings as compact descriptions of the layout of the C
structs and the intended conversion to/from Python values.

struct.unpack()

struct.unpack(format, buffer)

Unpack from the buffer buffer (presumably packed by pack(format, ...))
according to the format string format. �e result is a tuple even if it
contains exactly one item. �e buffer’s size in bytes must match the size
required by the format, as reflected by calcsize().

struct.pack()

struct.pack(format, v1, v2, ...)

20

https://docs.python.org/3/library/struct.html

Python for Network Engineers

Return a bytes object containing the values v1, v2, ... packed according to
the format string format. �e argumentsmustmatch the values required
by the format exactly.

Format Strings

Format strings are the mechanism used to specify the expected layout
whenpacking andunpackingdata. �ey are built up fromFormatCharac-
ters, which specify the type of data being packed/unpacked. In addition,
there are special characters for controlling the Byte Order, Size, and
Alignment.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and
byte order, and properly aligned by skipping pad bytes if necessary (ac-
cording to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indi-
cate the byte order, size and alignment of the packed data, according to
Figure 2.1.

Figure 2.1: Struct - Byte Order, Size, and Alignment

If the first character is not one of these, ’@’ is assumed.

21

2.3.0

Format Characters

Format characters have the following meaning; the conversion between
C and Python values should be obvious given their types. �e "Standard
size" column refers to the size of the packed value in bytes when using
standard size; that is, when the format string starts with one of ’<’, ’>’, ’!’
or ’=’. When using native size, the size of the packed value is platform-
dependent.

Figure 2.2: Struct - Format Characters

A format character may be preceded by an integral repeat count. For

22

Python for Network Engineers

example, the format string ’4h’ means exactly the same as ’hhhh’.

Examples

Let’s go over a simple example for the pack and unpack functions.

>> import struct

>> struct.pack(’h h l’, 1, 2, 3)

b’\x00\x01\x00\x02\x00\x00\x00\x03’

From Figure 2.2, h (integer) has 2 bytes and l (integer) has 4 bytes. Notice
that in terms of C Types, h is a short and l is a long integer. With that,
number 1 will pack with 2 bytes (0x00 0x01), number 2 will pack with 2
bytes (0x00 0x02), and number 3 will pack with 4 bytes (0x00 0x00 0x00
0x03).

>> import struct

>> struct.unpack(’h h l’, b’\x00\x01\x00\x02

\x00\x00\x00\x03’)

(1, 2, 3)

When you unpack, you need to make sure that the format argument
matches the data in the buffer argument.

Let’s cover another example but this time let’s use these functions with a
raw network packet.

23

2.4.0

In Chapter 6 we cover with more detail how to parse data from raw pack-
ets. For nowwewill just give one example to see these functions in action.

An Ethernet frame (Figure 2.3 consists of a destinationMAC address (6
bytes), source MAC address (6 bytes), ethernet type (2 bytes), payload
data, and a CRC checksum (last 4 bytes).

Figure 2.3: Ethernet Frame Structure

To extract the first 14 bytes from an ethernet frame received from a socket
connection, we would do the following unpack command:

(...)

raw_data = conn.recv(65535)

dest_mac, src_mac, ether_type =

struct.unpack(’! 6s 6s H’, raw_data[:14])

We use ’!’ to indicate that we are dealing with network byte order, then
group the first 6 chars (6s) for destinationMAC, the second 6 chars (6s)
for source MAC and at last 2 bytes (H) for Ethernet Type.

24

Python for Network Engineers

2.4 Other Functions

map()

map(function, iterable, ...)

Return an iterator that applies function to every item of iterable, yielding
the results. If additional iterable arguments are passed, functionmust
take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest
iterable is exhausted. For cases where the function inputs are already
arranged into argument tuples, see itertools.starmap().

Python program to demonstrate working of map:

Return double of n

def addition(n):

return n + n

We double all numbers using map()

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

25

2.4.0

join()

string_name.join(iterable)

�e join()method is a stringmethod and returns a string in which the
elements of sequence have been joined by str separator.

Python program to demonstrate the use of join function to join list ele-
ments with a character

>> list1 = [’1’,’2’,’3’,’4’]

>> s = "-"

>> # joins elements of list1 by ’-’

>> # and stores in sting s

>> s = s.join(list1)

>>

>> # join use to join a list of

>> # strings to a separator s

>> print(s)

1-2-3-4

�is function is going to be used later to format IP andMAC addresses
to a friendly format.

26

3
Python Socket Vocabulary

�is section provides a brief description to the BSD socket interface. It is
available on all modern Unix systems,Windows, MacOS, and probably
additional platforms.

Note

Some behavior may be platform dependent, since calls are made
to the operating system socket APIs.

�e Python interface is a straightforward transliteration of the Unix sys-
tem call and library interface for sockets to Python’s object-oriented style:
the socket() function returns a socket object whose methods implement
the various socket system calls. Parameter types are somewhat higher-
level than in the C interface: as with read() and write() operations on
Python files, buffer allocation on receive operations is automatic, and
buffer length is implicit on send operations.

�is section covers all the functionsused in the examples presented in this
document. For additional details or information go to the python socket
API library.

https://docs.python.org/3/library/socket.html

3.1.0

3.1 Creating Sockets

�e following function creates a socket object using the given address
family, socket type and protocol number. Returns socket object handle.

socket.socket()

s = socket.socket(family, type, proto)

family

• socket.AF_INET (the default)

• socket.AF_INET6

• socket.AF_UNIX

• socket.AF_CAN

• socket.AF_PACKET

• socket.AF_RDS

type

• socket.SOCK_STREAM (the default)

• socket.SOCK_DGRAM

• socket.SOCK_RAW

proto

• socket.IPPROTO_IP = 0

28

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

Python Socket Vocabulary

• socket.IPPROTO_ICMP = 1

• ntohs(3) (Gateway-to-Gateway Protocol)

• socket.IPPROTO_TCP = 6

• socket.IPPROTO_UDP = 17

• socket.IPPROTO_RAW = 255

3.2 SendingData

After creating a socket with socket.socket() and using the socket object
handle (s), the following functions can be used to read data from the
socket.

socket.send()

nbytes_sent = s.send(bytes)

Send data to the socket. �e socketmust be connected to a remote socket
(e.g. TCP connection). Returns the number of bytes sent. Applications
are responsible for checking that all data has been sent; if only some of
the data was transmitted, the application needs to attempt delivery of
the remaining data.

socket.sendall()

answer = s.sendall(bytes)

29

3.3.0

Send data to the socket. �e socketmust be connected to a remote socket.
Unlike send(), this method continues to send data from bytes until either
all data has been sent or an error occurs. None is returned on success.
On error, an exception is raised, and there is no way to determine how
much data, if any, was successfully sent.

socket.sendto()

nbytes_sent = s.sendto(bytes, address)

Send data to the socket. �e socket should not be connected to a remote
socket, since the destination socket is specified by address (e.g. UDP
connection). Return the number of bytes sent.

3.3 ReceivingData

After creating a socket with socket.socket() and using the socket object
handle (s), the following functions can be used to write data from the
socket.

socket.recv()

bytes_data = socket.recv(bufsize)

Receive data from the socket. �e return value is a bytes object represent-
ing the data received. �emaximum amount of data to be received at
once is specified by bufsize.

30

Python Socket Vocabulary

For best match with hardware and network realities, the value of bufsize
should be a relatively small power of 2, for example, 4096.

socket.recvfrom()

bytes_data, address = socket.recvfrom(bufsize)

Receive data from the socket. �e return value is a pair (bytes, address)
where bytes is a bytes object representing the data received and address
is the address of the socket sending the data.

3.4 Socket Objects

After creating a socket with socket.socket() and using the socket object
handle (s), the following functions can be used.

socket.accept()

conn, address = s.accept()

Accept a connection. �e socket must be bound to an address and lis-
tening for connections (e.g. TCP connection). �e return value is a pair
(conn, address) where conn is a new socket object usable to send and
receive data on the connection, and address is the address bound to the
socket on the other end of the connection.

31

3.4.0

socket.bind()

s.bind(address)

Bind the socket to address. �e socket must not already be bound.

socket.listen()

s.listen([backlog])

Enable a server to accept connections. If backlog is specified, it must be
at least 0 (if it is lower, it is set to 0); it specifies the number of unaccepted
connections that the systemwill allow before refusing new connections.
If not specified, a default reasonable value is chosen.

socket.close()

s.close()

Mark the socket closed. Once that happens, all future operations on the
socket object will fail. �e remote end will receive no more data (after
queued data is flushed).

32

Python Socket Vocabulary

Sockets are automatically closed when they are garbage-collected, but
it is recommended to close() them explicitly, or to use a with statement
around them.

socket.connect()

s.connect(address)

Connect to a remote socket at address. If the connection is interrupted
by a signal, the method waits until the connection completes, or raise
a socket.timeout on timeout, if the signal handler doesn’t raise an ex-
ception and the socket is blocking or has a timeout. For non-blocking
sockets, the method raises an InterruptedError exception if the con-
nection is interrupted by a signal (or the exception raised by the signal
handler).

socket.setsockopt()

s.setsockopt(level, optname, value: int)

Set the value of the given socket option.

level

• SOL_IP = 0

• SOL_TCP = 6

• SOL_UDP = 17

33

3.5.0

• socket.SOL_SOCKET = 65535

optname

• SOMAXCONN = 2147483647

• SO_ACCEPTCONN = 2

• SO_BROADCAST = 32

• SO_DEBUG = 1

• SO_DONTROUTE = 16

• SO_ERROR = 4103

• SO_EXCLUSIVEADDRUSE = -5

• SO_KEEPALIVE = 8

• SO_LINGER = 128

• SO_OOBINLINE = 256

• SO_RCVBUF = 4098

• SO_RCVLOWAT = 4100

• SO_RCVTIMEO = 4102

• SO_REUSEADDR = 4

• SO_SNDBUF = 4097

• SO_SNDLOWAT = 4099

• SO_SNDTIMEO = 4101

• SO_TYPE = 4104

• SO_USELOOPBACK = 64

34

Python Socket Vocabulary

3.5 Socket Services

After creating a socket with socket.socket() and using the socket object
handle (s), the socketmodule also offers various network-related services.

socket.gethostbyname()

hostname = socket.gethostbyname(hostname)

Translate a host name to IPv4 address format. �e IPv4 address is re-
turned as a string, such as ’100.50.200.5’. If the host name is an IPv4
address itself it is returned unchanged.

socket.ntohs()

socket.ntohs(x)

Convert 16-bit positive integers from network to host byte order. On
machines where the host byte order is the same as network byte order,
this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.ntohl()

socket.ntohl(x)

35

3.5.0

Convert 32-bit positive integers from network to host byte order. On
machines where the host byte order is the same as network byte order,
this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.htons()

socket.htons(x)

Convert 16-bit positive integers from host to network byte order. On
machines where the host byte order is the same as network byte order,
this is a no-op; otherwise, it performs a 2-byte swap operation.

socket.htonl()

socket.htonl(x)

Convert 32-bit positive integers from host to network byte order. On
machines where the host byte order is the same as network byte order,
this is a no-op; otherwise, it performs a 4-byte swap operation.

36

4
Programmingwith Sockets

It is always fun to create your own custom clients and servers for any
protocol of your choice. Python provides a good coverage on the low-level
networking interface. It all starts with BSD socket interface. Python has
a socket module that gives you the necessary functionality to work with
the socket Interface.

Network programming in any programming language can begin with
sockets. But what is a socket? Simply put, a network socket is a virtual
end point where entities can perform inter-process communication. For
example, one process sitting in a computer, exchanges data with another
process sitting on the same or another computer. We typically label the
first process which initiates the communication as the client and the
latter one as the server.

Python has quite an easy way to start with the socket interface. In order
to understand this better, let’s use an echo client/server application as an
example. Figure 4.1 shows a flow of client/server interaction diagram.
In the interaction between this client and server, the server is listening
for clients to transmit information. Once a client sends a message to the

4.0.0

Figure 4.1: Echo Diagram

sever, the server echos that samemessage back to the client.

�ere are two possible ways to program this interaction between client
and server; you can use UDP or TCP sockets.

TCP vs UDP Comparison [Video]

Material Review

38

https://youtu.be/uwoD5YsGACg

Programming with Sockets

4.1 Workingwith UDP sockets

Let’s start by implementing the echo application using a UDP socket.
Figure 4.2 represents the interaction between the client and the server
using socket vocabulary.

BlockDiagram

Figure 4.2: UDPEcho Diagram

Notice that Figure 4.2 presents more information than Figure 4.1. �is is
something common that happens when you are developing any type of
code. You start with a simple diagram of your problem or application and
as you develop your idea, you keep improving the diagram. Sometimes
youmight have different diagrams for that same problem or application
representing different interactions between the client and the server.

39

4.1

�e functions that are going to be used for the echo application using
UDP sockets are summarized below. You can always go to chapter 3 to
get more details about these functions.

Socket Functions

socket.socket() → Create socket

setsockopt() → Enable reuse port address

bind() → Indicates that this is the server

sendto() → Sendmessage

recvfrom() → Receive message

close() → Close socket

40

Programming with Sockets

UDPClient� �
import socket

host = "localhost"

port = 10001

5

Create Socket

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

10 # Send Message to Server

msg = input()

s.sendto(msg.encode(’utf-8’), (host, port))

Receive Echo from Server

15 data, addr = s.recvfrom(1024)

print("IP: " + addr[0] + " | " + "Port: " + str(addr[1]))

print(str(data.decode(’utf-8’)))

Close Socket

20 s.close()� �
Listing 4.1: UDPClient Echo

41

4.1

UDPServer� �
import socket

host = ’’

port = 10001

5

Create Socket

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

10 # Bind Socket

s.bind((host, port))

Receive Message from Client

data, addr = s.recvfrom(1024)

15

Send Echo to Client

s.sendto(data, addr)

Close Socket

20 s.close()� �
Listing 4.2: UDP Server Echo

42

Programming with Sockets

4.2 Workingwith TCP sockets

Nowwe cover the echo application donewith TCP sockets. Figure 4.3 rep-
resents the interaction between the client and the server echo application
using socket vocabulary.

BlockDiagram

Figure 4.3: TCP Echo Diagram

For more details about the functions used for the TCP client/server echo
application, review chapter 3

43

4.2

Socket Functions

socket.socket() Create socket

setsockopt() Enable reuse port address

bind() Indicates that this is the server

listen() Listen for incoming connections

accept() Accept connections

send() Sendmessage

recv() Receive message

close() Close socket

44

Programming with Sockets

TCPClient� �
import socket

host = "localhost"

port = 12500

5

Create Socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

10 # Connect socket

s.connect((host, port))

Send message to server

msg = input()

15 s.send(msg.encode(’utf-8’))

Receive message from server

echoMessage = s.recv(1024)

print("Reply from Server: " + str(echoMessage.decode(’utf-8

’)))

20

Close socket

s.close()� �
Listing 4.3: TCPClient Echo

45

4.2

TCP Server� �
import socket

host = ’’

port = 12500

5

Create Socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

10

Bind socket

s.bind((host, port))

Listen for incoming connections

15 s.listen(1)

Connection Accepted

connectionSocket, addr = s.accept()

20 # Receive message from client

message = connectionSocket.recv(1024)

Echo message to client

connectionSocket.send(message)

25

connectionSocket.close()

s.close()� �
Listing 4.4: TCP Server Echo

46

5
Concurrency

Let’s start by modifying the TCP Server Echo code from the previous
chapter and add the following lines of code:

1. Import the followingmodule

from time import sleep

2. Add a delay between recv() and send()

(...)

message = connectionSocket.recv(1024)

sleep(3) # Wait 3 seconds

connectionSocket.send(message)

(...)

5.1

Now run the TCP Server Echo and try connectingmore than one client at
once. Youwill notice that while the server is attending the first client that
connects to it, the remaining clients do not work. What is happening
here?

�e problem is that the server can only exchange messages with one
client at a time. As soon as the first client connects, the server waits for
a message from the client, waits for 3 seconds and then sends the echo
message back to the client. During this time the server isn’t able to attend
new clients.

We can temporally fix this issue by increasing the number of connections
that the socket can accept by increasing the number passed to s.listen().

(...)

s.listen(5) # Accepts up to 5 clients

(...)

We still face a couple of challenges with this approach. Sure the client
now get the connection establish but it still needs to wait for its turn to
exchange messages with the server. And we also have the challenge of
choosing the right amount of connections that are going to be accepted.

�ere are two possible solutions to tackle this problem. We can either
use more than one thread or process, or use non-blocking sockets along
with an event-driven architecture. We’re going to look at both of these
approaches, starting with multithreading.

48

Concurrency

5.1 Multithreading Server

Python has APIs that allow us to write bothmultithreading andmultipro-
cessing applications. �e principle behind multithreading andmultipro-
cessing is simply to take copies of our code and run them in additional
threads or processes. �e operating system automatically schedules the
threads and processes across available CPU cores to provide fair process-
ing time allocation to all the threads and processes. �is effectively allows
a program to simultaneously runmultiple operations. In addition, when
a thread or process blocks, for example, when waiting for IO, the thread
or process can be de-prioritized by the OS, and the CPU cores can be
allocated to other threads or processes that have actual computation to
do.

Here is an overview of how threads and processes relate to each other:

Figure 5.1: Processes and�reads Comparison

49

5.1.0

�reads exist within processes. A process can contain multiple threads
but it always contains at least one thread, sometimes called the main
thread. �reads within the same process share memory, so data transfer
between threads is just a case of referencing the shared objects. Pro-
cesses do not sharememory, so other interfaces, such as files, sockets, or
specially allocated areas of sharedmemory,must be used for transferring
data between processes.

When threads have operations to execute, they ask the operating system
thread scheduler to allocate them some time on a CPU, and the scheduler
allocates the waiting threads to CPU cores based on various parameters,
which vary from OS to OS. �reads in the same process may run on
separate CPU cores at the same time.

Although two processes have been displayed in Figure 5.1, multiprocess-
ing is not going on here, since the processes belong to different appli-
cations. �e second process is displayed to illustrate a key difference
between Python threading and threading in most other programs. �is
difference is the presence of the GIL.

�reading and the GIL

�e CPython interpreter (the standard version of Python available for
download fromwww.python.org) contains something called the Global
Interpreter Lock (GIL). �e GIL exists to ensure that only a single thread
in a Python process can run at a time, even if multiple CPU cores are
present. �e reason for having the GIL is that it makes the underlying C
code of the Python interpreter much easier to write andmaintain. �e
drawback of this is that Python programs using multithreading cannot
take advantage of multiple cores for parallel computation.

�is is a cause of much contention; however, for us this is not so much of
a problem. Even with the GIL present, threads that are blocking on I/O

50

Concurrency

are still de-prioritized by the OS and put into the background, so threads
that do have computational work to do can run instead. �e following
figure is a simplified illustration of this:

Figure 5.2: Global Interpreter Lock (GIL) Example

�eWaiting for GIL state is where a thread has sent or received some
data and so is ready to come out of the blocking state, but another thread
has the GIL, so the ready thread is forced to wait. In many network
applications, including our echo and chat servers, the time spent waiting
on I/O ismuch higher than the time spent processing data. As long as we
don’t have a very large number of connections (a situation we’ll discuss
later on when we come to event driven architectures), thread contention
caused by the GIL is relatively low, and hence threading is still a suitable
architecture for these network server applications.

With this in mind, we’re going to use multithreading rather thanmulti-
processing in our echo server. �e shared data model will simplify the
code that we’ll need for allowing our chat clients to exchangemessages
with each other, and becausewe’re I/O bound,wedon’t need processes for
parallel computation. Another reason for not using processes in this case
is that processes are more "heavyweight" in terms of the OS resources, so
creating anewprocess takes longer than creating anew thread. Processes
also use more memory.

51

5.1.0

One thing to note is that if you need to perform an intensive computation
in your network server application (maybe you need to compress a large
file before sending it over the network), then you should investigate
methods for running this in a separate process. Because of quirks in
the implementation of the GIL, having even a single computationally
intensive thread in amainly I/O bound process whenmultiple CPU cores
are available can severely impact the performance of all the I/O bound
threads.

Multithreaded TCPEcho Server

Abenefitof themultithreadingapproach is that theOShandles the thread
switches for us, which means we can continue to write our program in a
procedural style. Hence we only need to make small adjustments to our
server program to make it multithreaded, and thus, capable of handling
multiple clients simultaneously.

Let’s add this threading functionality to the TCP Server Echo code from
previous chapter. I will describe the code that we are going to add step
by step and you can find the all version in ...

1. Import the threadmodule

import threading

2. Put s.accept(), connectionSocket.recv(), connectionSocket.send(),
and connectionSocket.close() under an infinite while loop.

52

Concurrency

(...)

s.listen(1)

while True:

Connection Accepted

connectionSocket, addr = s.accept()

Receive message from client

message = connectionSocket.recv(1024)

Echo message to client

connectionSocket.send(message)

connectionSocket.close()

s.close()

Notice so far that nothing changed in the way that the TCP Server works
besides that instead of closing the connection, now it runs forever and
after attending one client cycles back to attend a client that connects
again to the server.

3. Let’s create a function client_thread(), copy connectionSocket.recv(),
connectionSocket.send(), and connectionSocket.close() inside the func-
tion and add connectionSocket and addr as arguments of that function.

53

5.1.0

def client_thread(connectionSocket, addr):

Receive message from client

message = connectionSocket.recv(1024)

Echo message to client

connectionSocket.send(message)

connectionSocket.close()

4. Call that function after s.accetpt() andpass connectionSocket and addr
to client_thread() function.

(...)

s.listen(1)

while True:

Connection Accepted

connectionSocket, addr = s.accept()

client_thread(connectionSocket, addr)

s.close()

We are still not dealing with threads yet but we have the code ready to
incorporate it with threads.

5. Delete client_thread() from the inifite loop. Create a thread and assign
client_thread() function to target, and connectionSocket and addr as
arguments of the thread. Set thread deamon to true and start the thread.

54

Concurrency

(...)

s.listen(1)

while True:

Connection Accepted

connectionSocket, addr = s.accept()

thread = threading.Thread(

target=client_thread,

args=(connectionSocket, addr))

thread.setDaemon(True)

thread.start()

s.close()

Note: Setting the daemon argument in the thread constructor to True,
will allow the program to exit if we hit ctrl - c without us having to explic-
itly close all of our threads first.

If you try this echo server with multiple clients, then you’ll see that the
server can now handle multiple connections.

55

5.1.0

TCP�reading Server� �
from time import sleep
import socket
import threading

5 host = ’’
port = 12500

def client_thread(connectionSocket, addr):
10 # Receive message from client

message = connectionSocket.recv(1024)

sleep(3)

15 # Echo message to client
connectionSocket.send(message)

connectionSocket.close()

20 # Create Socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

Bind socket
25 s.bind((host, port))

Listen for incoming connections
s.listen(1)

30 while True:
Connection Accepted
connectionSocket, addr = s.accept()

thread = threading.Thread(target=client_thread, args=(
connectionSocket, addr))

35
thread.setDaemon(True)
thread.start()

s.close()� �
Listing 5.1: TCP Server Echo with�reads

56

Concurrency

5.2 Event Driven Server

For many purposes threads are great, especially because we can still pro-
gram in the familiar procedural, blocking-IO style. But they suffer from
the drawback that they struggle whenmanaging large numbers of con-
nections simultaneously, because they are required to maintain a thread
for each connection. Each thread consumes memory, and switching
between threads incurs a type of CPU overhead called context switching.
Although these aren’t a problem for small numbers of threads, they can
impact performance when there are many threads to manage. Multipro-
cessing suffers from similar problems.

An alternative to threading andmultiprocessing is using the event-driven
model. In this model, instead of having the OS automatically switch
between active threads or processes for us, we use a single thread which
registers blocking objects, such as sockets, with the OS. When these
objects become ready to leave the blocking state, for example a socket
receives some data, the OS notifies our program; our program can then
access these objects in non-blocking mode, since it knows that they are
in a state that is ready for immediate use. Calls made to objects in non-
blocking mode always return immediately. We structure our application
around a loop, where we wait for the OS to notify us of activity on our
blocking objects, then we handle that activity, and then we go back to
waiting. �is loop is called the event loop.

�is approach provides comparable performance to threading andmul-
tiprocessing, but without the memory or context switching overheads,
and hence allows for greater scaling on the same hardware. �e chal-
lenge of engineering applications that can efficiently handle very large
numbers of simultaneous connections has historically been called the
c10k problem, referring to the handling of ten-thousand concurrent con-
nections in a single thread. With the help of event-driven architectures,
this problem was solved, though the term is still often used to refer to

57

5.2.0

the challenges of scaling when it comes to handling many concurrent
connections.

�e following diagram shows the relationship of processes and threads
in an event-driven server:

Figure 5.3: Event Driven Example

Although the GIL and the OS thread scheduler are shown here for com-
pleteness, in the case of an event-driven server, they have no impact on
performance because the server only uses a single thread. �e scheduling
of I/O handling is done by the application.

Event-Driven TCPEcho Server

As mentioned earlier, if the number of connections start to be very large,
then we need to start navigating towards a solution that uses multipro-
cessing instead of multithreading.

58

Concurrency

Python provides two classes for multiprocessing i.e. Process and Pool
class. �ough Pool and Process both execute the task parallelly, their way
of executing tasks parallelly is different.

�e pool distributes the tasks to the available processors using a FIFO
scheduling. It works like a map-reduce architecture. It maps the input
to the different processors and collects the output from all the processors.
After the execution of code, it returns the output in form of a list or
array. It waits for all the tasks to finish and then returns the output. �e
processes in execution are stored in memory and other non-executing
processes are stored out of memory.

�e process class puts all the processes in memory and schedules execu-
tion using FIFO policy. When the process is suspended, it pre-empts and
schedules a new process for execution.

When to use Pool or Process? It depends on the task in hand. �e pool
allows you to do multiple jobs per process, which may make it easier
to parallelize your program. If you have a million tasks to execute in
parallel, you can create a Pool with a number of processes as many as
CPU cores and then pass the list of the million tasks to pool.map. �e
pool will distribute those tasks to theworker processes(typically the same
in number as available cores) and collects the return values in the form
of a list and pass it to the parent process. Launching separate million
processes would be much less practical (it would probably break your
OS).

On the other hand, if you have a small number of tasks to execute in
parallel, and you only need each task done once, it may be perfectly rea-
sonable to use a separate multiprocessing.process for each task, rather
than setting up a Pool.

Writing code using a lower lever pool API can be can be quite involved,
and complicated to manage. �ere are several libraries and frameworks

59

5.2.0

available for taking some of the leg work out of writing the code that
benefits by using pools.

�e eventlet library provides a high-level API for event-driven program-
ming, but it does so in a style that mimics the procedural, blocking-IO
style that we used in our multithreaded example. �e upshot is that we
can effectively take our multithreaded server code, make a fewmodifica-
tions to it to use eventlet instead, and immediately gain the benefits of
the event-driven model.

1. Include eventlet module. Remover all other includes

import eventlet

2. Substitute socket.socket(), s.setsockopt(), s.bind(), and s.listen()with
eventlet.listen().

server = eventlet.listen(host, port)

eventlet.listen() opens a server socket and it sets SO_REUSEADDR on
the socket.

3. Create a set of pools to your eventlet.

pool = eventlet.GreenPool(10000)

60

https://eventlet.net/doc/basic_usage.html

Concurrency

enventlet.GreenPool() controls the amount of connections that can be
done with eventlet.

4. Remove the linesof code relatedwith threadingandaddpool.spawn_n().

(...)

while True:

Connection Accepted

connectionSocket, addr = s.accept()

pool.spawn_n(client_thread, connectionSocket)

pool.spawn_n() launches multiple greenthreads in parallel. It receives
client_thread() as the function, and connectionSocket and addr as argu-
ments of that function.

We are almost done. We just need to modify the sleep function under
client_thread() to be compatible with an eventlet greenthread.

5. Substitute sleep() function with eventlet.greenthread.sleep().

61

https://eventlet.net/doc/modules/greenpool.html

5.2.0

def client_thread(connectionSocket, addr):

Receive message from client

message = connectionSocket.recv(1024)

eventlet.greenthread.sleep(3)

Echo message to client

connectionSocket.send(message)

connectionSocket.close()

We can test this with our multithreaded client to ensure that it works as
expected. As you can see, it’s pretty much identical to our multithreaded
server, with a few changes made so as to use eventlet.

62

Concurrency

TCPEvent Server� �
import eventlet

host = ’’
port = 12500

5

def client_thread(connectionSocket, addr):
Receive message from client
message = connectionSocket.recv(1024)

10
eventlet.greenthread.sleep(3)

Echo message to client
connectionSocket.send(message)

15
connectionSocket.close()

Listen for incoming connections
s = eventlet.listen((host, port))

20
pool = eventlet.GreenPool(10000)

while True:
Connection Accepted

25 connectionSocket, addr = s.accept()

pool.spawn_n(client_thread, connectionSocket, addr)� �
Listing 5.2: TCP Server Echo with eventlet

63

6
Packet Analyzer

�e basic tool for observing the messages exchanged between execut-
ing protocol entities is called a packet sniffer. As the name suggests, a
packet sniffer captures (“sniffs”) messages being sent/received from/by
your computer; it will also typically store and/or display the contents of
the various protocol fields in these captured messages. A packet sniffer
itself is passive. It observes messages being sent and received by applica-
tions and protocols running on your computer, but never sends packets
itself. Similarly, received packets are never explicitly addressed to the
packet sniffer. Instead, a packet sniffer receives a copy of packets that
are sent/received from/by application and protocols executing on your
machine.

Figure 6.1 shows the structure of a packet sniffer. At the right of Figure
6.1 are the protocols (in this case, Internet protocols) and applications
(such as a web browser or ftp client) that normally run on your computer.
�e packet sniffer, shown within the dashed rectangle in Figure 6.1 is
an addition to the usual software in your computer, and consists of two
parts. �e packet capture library receives a copy of every link-layer frame
that is sent from or received by your computer.

Packet Analyzer

Figure 6.1: Packet Sniffer Structure

Remember that messages exchanged by higher layer protocols such as
HTTP, FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-
layer frames that are transmitted over physicalmedia such as anEthernet
cable (Figure 6.2).

Figure 6.2: Encapsulation Example

Going back to Figure 6.1, the assumed physical media is an Ethernet, and
so all upper-layer protocols are eventually encapsulated within an Ether-
net frame. Capturing all link-layer frames thus gives you all messages
sent/received from/by all protocols and applications executing in your
computer.

�e second component of a packet sniffer is the packet analyzer, which
displays the contents of all fields within a protocol message. In order to

65

6.1.0

do so, the packet analyzer must "understand" the structure of all mes-
sages exchanged by protocols. For example, suppose we are interested in
displaying the variousfields inmessages exchangedby theHTTPprotocol
in Figure 6.1. �e packet analyzer understands the format of Ethernet
frames, and so can identify the IP datagramwithin an Ethernet frame.
It also understands the IP datagram format, so that it can extract the
TCP segment within the IP datagram. Finally, it understands the TCP
segment structure, so it can extract the HTTPmessage contained in the
TCP segment. Finally, it understands the HTTP protocol and so, for ex-
ample, knows that the first bytes of an HTTPmessage will contain the
string "GET" "POST" or "HEAD".

Wireshark is a free and open-source packet analyzer that is widely used
for network troubleshooting, analysis, software and communications
protocol development, and education. �is chapter focus on the im-
plementation of a mini version ofWireshark (turtle sniffer), using the
terminal as a content display.

Before we go over turtle sniffer, let’s cover a basic packet sniffer.

6.1 Basic Sniffer

A simple packet sniffer in Python can be created with the help socket
module. We can use the raw socket type to get the packets. A raw socket
provides access to the underlying protocols, which support socket ab-
stractions.

As some behaviors of the socket module depend on the operating system
socket API and there is no uniform API for using a raw socket under a
different operating system, we are going to show two examples: one that
uses a Linux OS and another one that usesWindows.

�e full code for the basic sniffer can be found under Appendix A.

66

Packet Analyzer

Basic Sniffer under LinuxOS

Here are the steps to create a basic packet sniffer with socket module.

1. Create a newfile called basic_sniffer_linux.py and open it in your editor.
2. Import the required modules:

import socket

3. Now we can create a PACKET raw socket:

s = socket.socket(socket.AF_PACKET,

socket.SOCK_RAW,

socket.ntohs(3))

Both reading and writing to a raw socket require creating a raw socket
first. Here we use:

• AF_PACKET: Low-level packet interface

• SOCK_RAW: Raw socket

• ntohs(3): Packet protocol -> Gateway-to-Gateway (captures
everything including Ethernet frames)

4. Next, start an infinite loop to receive data from the socket:

while True:

print(s.recvfrom(65565))

67

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

6.1.0

�e recvfrommethod in the socket module helps us to receive all the data
from the socket. �e parameter passed is the buffer size; 65565 is the
maximum buffer size.
5. Now run the programwith Python:

sudo python3 basic_sniffer_linux.py

You should get similar results as shown in Figure 6.3

Figure 6.3: Basic Sniffer Capture (Linux OS)

Basic Sniffer underWindows

When socket protocol is set to capture everything including Ethernet
frames (socket.ntohs(3)), then all incoming packets will be passed to the
packet socket before they are passed to the protocols implemented in the
kernel.

For windows raw sockets, due toWin32 limitations the internet socket
API doesn’t not allow access to receive Ethernet frames. You can only use

68

Packet Analyzer

the API to generate and receive IP packets. We need to find a way to work
around this limitation.

Fortunately there are libraries that can overcome this limitation. What
you can do is to use aWinpcap/Npcap based library such as Scapy, to
access Raw low-level sockets.

Scapy has lots of capabilities of handling packets, but for learning pur-
poses we will use it to access raw data andmanipulate the data as if we
were using the normal socket API.

Let’s go over the steps to create a basic packet sniffer under windows.

1. Create a new file called basic_sniffer_windows.py and open it in your
editor.
2. Import the required modules:

from scapy.all import *

3. We need to select the correct network interface to collect data. �e
number that is associated to your Network Interface Card (NIC) can vary
from system to system. We need to list the available interfaces and select
the correct number for your system. For this example, we will let the user
enter the desired interface number.

IFACES.show()

number = input("NIC #> ")

4. �en we get the interface name by index

69

https://scapy.net/

6.1.0

iface = IFACES.dev_from_index(int(number))

5. Create a level 2 socket

socket = conf.L2socket(iface=iface)

6. Next, start an infinite loop to receive data from the socket:

while True:

packet_raw = socket.recv_raw()

print(packet_raw[1])

7. Now run the programwith Python:

python3 basic_sniffer_windows.py

You should get similar results as shown in Figure 6.4 and Figure 6.5

70

Packet Analyzer

Figure 6.4: Select Interface Number (Windows)

Figure 6.5: Basic Sniffer Capture (Windows)

71

6.2

6.2 Turtle Sniffer

�ebasic packet sniffer captures all Ethernet frames and displays the raw
data on the console or terminal. Turtle sniffer will do a bitmore with that
raw data. As you can see in Figure 6.6 and Figure 6.7 the data is parsed
and displayed in a user friendly manner.

Figure 6.6: Turtle Sniffer Capture (Windows)

�e rest of this chapter will describe how the data from different network
layers is parsed. �e full code for the turtle sniffer can be found under
Appendix B.

72

Packet Analyzer

Figure 6.7: Turtle Sniffer Capture (Linux)

73

6.2.0.0

ParsingData

Now that we know how to capture and display raw data that we sniffed,
we are in good shape to start unpack the headers and access payload data.

To make things easier to follow it is important to call proper names to
the data that will be parsed. Figure 6.8 shows the names for the data unit
and respective network layer that are implemented under turtle sniffer
code.

Figure 6.8: Data Unit and OSI Layers

To parse raw data, we need to have an idea on how the layers information
is structured. �e bits received by the Network Card are bundled into
frames. Going back to Figure 6.2, frames encapsulate packets, then
packets encapsulate segments, and segments encapsulate application
data.

Network interface cards handle the physical and data link layers and they
provide captured frames to the OS kernel drivers (Figure 6.9). Turtle
sniffer code works at the OS level and it will receive frames from Scapy
library.

74

Packet Analyzer

Figure 6.9: Network Cards andOSI Layers

Ethernet Frames

Our computers are most likely connected to an Ethernet infrastructure
so we will be receiving Ethernet frames. An Ethernet frame structure is
shown in Figure 6.10.
�e first six bytes are for the DestinationMAC address and the next six
bytes are for the Source MAC.�e last two bytes are for the Ether Type.
�e rest includes DATA and CRC Checksum.

For the Ether Type, we will focus on receiving IPv4 packets (type field
0x0800).

75

6.2.0.0

Figure 6.10: Ethernet Frame Structure

IPv4 Packets

According to RFC 791, an Internet header format looks like Figure 6.11

Figure 6.11: Internet Header Structure

�e IP header includes the following sections:

• Protocol Version (four bits): �e first four bits. �is represents the
current IP protocol.

76

https://tools.ietf.org/html/rfc791

Packet Analyzer

• Header Length (four bits): �e length of the IP header is repre-
sented in 32-bit words. Since this field is four bits, the maximum
header length allowed is 60 bytes. Usually the value is 5, which
means five 32-bit words: 5 * 4 = 20 bytes.

• Type of Service (eight bits): �e first three bits are precedence bits,
the next four bits represent the type of service, and the last bit is
left unused.

• Total Length (16 bits): �is represents the total IP datagram length
in bytes. �is a 16-bit field. �emaximum size of the IP datagram
is 65,535 bytes.

• Flags (three bits): �e second bit represents the Don’t Fragment
bit. When this bit is set, the IP datagram is never fragmented. �e
third bit represents the More Fragment bit. If this bit is set, then
it represents a fragmented IP datagram that has more fragments
after it.

• Time To Live (eight bits): �is value represents the number of hops
that the IP datagramwill go through before being discarded.

• Protocol (eight bits): �is represents the transport layer protocol
that handed over data to the IP layer.

• Header Checksum (16 bits): �is field helps to check the integrity
of an IP datagram.

• Source and destination IP (32 bits each): �ese fields store the
source and destination address, respectively.

77

6.2.0.0

How to do it...

Following are the steps to parse an Ethernet frame using python under
Linux OS:
1. Import the modules required to parse the data.

import socket

import struct

import textwrap

2. Nowwe can create a function to parse the Ethernet header:

Unpack ethernet frame

def ethernet_frame(data):

dest_mac, src_mac, proto =

struct.unpack(’! 6s 6s H’, data[:14])

return get_mac_addr(dest_mac),

get_mac_addr(src_mac),

socket.htons(proto), data[14:]

Here we use the unpack method from struct module to unpack the head-
ers (the first 14 bytes of data argument that corresponds to frame infor-
mation). From the Ethernet frame structure, the first six bytes are for
the destination MAC, the second 6 bytes are for the source MAC, and the
last unsigned short is for the Ether Type. Finally, the rest is payload infor-
mation (packet information). So, this function returns the destination
MAC, source MAC, protocol, and data (remaining payload).

MAC addressess can be properly formatted using get_mac_addr() func-
tion.

78

Packet Analyzer

Return properly formatted

MAC address (ie AA:BB:CC:DD:EE:FF)

def get_mac_addr(bytes_addr):

bytes_str = map(’{:02X}’.format, bytes_addr)

return ’:’.join(bytes_str).upper()

3. Now we can create turtle_sniffer() function

TAB_1 = ’ - ’

def turtle_sniffer():

Get host

host = socket.gethostbyname(

socket.gethostname())

print("IP: {}".format(host))

Linux Version

conn = socket.socket(socket.AF_PACKET,

socket.SOCK_RAW,

socket.ntohs(3))

while True:

raw_data, addr = conn.recvfrom(65535)

dest_mac, src_mac, eth_proto, data =

ethernet_frame(raw_data)

print("\nEthernet Frame:")

print(TAB_1 + "Destination: {},

Source: {}, Protocol: {}".format(

dest_mac, src_mac, eth_proto))

79

6.2.0.0

4. And call it on our main function

if __name__ == ’__main__’:

turtle_sniffer()

Up to this step you will be able to capture, parse and display Ethernet
frames.

Figure 6.12: Turtle Sniffer - Frames Displayed

5. Now we can check the data section in the Ethernet frame and parse
the IP headers. We can create another function to parse IPv4 headers.

80

Packet Analyzer

Unpack IPv4 Packet

def ipv4_packet(data):

version_header_len = data[0]

version = version_header_len >> 4

header_len = (version_header_len & 15) * 4

Start unpacking header

ttl, proto, src, target =

struct.unpack(’! 8x B B 2x 4s 4s’,

data[:20])

return version, header_len, ttl, proto,

ipv4(src), ipv4(target),

data[header_len:]

As per the IP headers, we will unpack the headers using the unpack
method in struct, and return the version, header lentgth, time to live
(ttl), transport layer protocol, source and destination IPs.

IP addressess can be properly formatted using ipv4() function.

Return properly format IPv4 address

def ipv4(addr):

return ’.’.join(map(str, addr))

6. Now update turtle_sniffer() function to print IP headers.

81

6.2.0.0

TAB_1 = ’ - ’

TAB_2 = ’ - ’

def turtle_sniffer():

(...)

while True:

(...)

print("\nEthernet Frame:")

print(TAB_1 + "Destination: {},

Source: {}, Protocol: {}".format(

dest_mac, src_mac, eth_proto))

8 for IPv4

if eth_proto == 8:

(version, header_length, ttl, proto,

src, target, data) = ipv4_packet(data)

print(TAB_1 + ’IPv4 Packet:’)

print(TAB_2 + ’Version: {},

Header Length: {},

TTL: {}’.format(

version, header_length, ttl))

print(TAB_2 + ’Protocol: {},

Source: {},

Target: {}’.format(

proto, src, target))

Up to this step you will be able to capture, parse and display Ethernet

82

Packet Analyzer

frames plus IPV4 packets.

Figure 6.13: Turtle Sniffer - Frames + Packets Displayed

Now that we have the network layer unpacked, we are in good shape to
start unpack transport layer data.

Segments

Turtle sniffer will focus on the following protocols: UDP, TCP and ICMP.

1 ICMP is the Internet Control Message Protocol, a helper
protocol that helps Layer 3. ICMP is used to troubleshoot and
report error conditions. Without ICMP to help, IP would
fail when faced with routing loops, ports, hosts, or networks
that are down, etc. ICMPhasno concept of ports, as TCPand
UDP do, but instead uses types and codes. Commonly used

1Bryan Simon, "CISSP Study Guide", 3rd Edition, 2016

83

6.2.0.0

ICMP types are echo request and echo reply (used for ping)
and time to live exceeded in transit (used for traceroute).

"Which protocol runs at which layer" is often a subject of
fierce debate. We call this the “bucket game.” For example,
which bucket does ICMP go into: Layer 3 or Layer 4? ICMP
headers are at Layer 4, just like TCP and UDP, so many will
answer “Layer 4.” Others argue ICMP is a Layer 3 protocol,
since it assists IP (a Layer 3 protocol), and has no ports.

�is shows how arbitrary the bucket game is: a packet cap-
ture shows the ICMP header at Layer 4, so many network
engineers will want to answer “Layer 4:” never argue with a
packet. �e same argument exists for many routing proto-
cols: for example, BGP is used to route at Layer 3, but BGP
itself is carried by TCP (and IP). �is book will cite clear-cut
bucket game protocol/layers in the text and self tests, but
avoid murkier examples (just as the exam should).

For simplicity of the code, turtle sniffer considers ICMP a layer 4 protocol
(transport layer protocol).

From the packet header field protocol (Figure 6.11), we can determine
which protocol is being encapsulated under the transport layer (Figure
6.14). �is information can be found under RFC 1700.

ICMP

An ICMP segment structure is shown in Figure 6.15. It consists of a type
(1 bytes), a code (1 byte), and checksum (2 bytes).

7. Let’s create a function to unpack ICMP segments.

84

https://tools.ietf.org/html/rfc1700

Packet Analyzer

Figure 6.14: IPv4 Packet - Protocol Field Options (RFC 1700)

Figure 6.15: ICMP Segment Structure

Unpack ICMP packet

def icmp_packet(data):

icmp_type, code, checksum =

struct.unpack(’! B B H’, data[:4])

return icmp_type, code, checksum, data[4:]

Include format_multi_line() function to format binary data in a more
user friendly way. Any payload data or data that doesn’t have a protocol

85

6.2.0.0

type implemented can be displayed using this function.

Format data display

def format_multi_line(prefix, string, size=80):

size -= len(prefix)

if isinstance(string, bytes):

string = ’’.join(r’\x{:02x}’.format(byte)

for byte in string)

if size % 2:

size -= 1

return ’\n’.join([prefix + line for line in

textwrap.wrap(string, size)])

8. Update turtle_sniffer() function to print ICMP headers.

(...)

DATA_TAB_2 = ’ ’

DATA_TAB_3 = ’ ’

def turtle_sniffer():

(...)

while True:

(...)

8 for IPv4

if eth_proto == 8:

(...)

86

Packet Analyzer

Check protocols

#***********************
ICMP

if proto == 1:

icmp_type, code,

checksum, data = icmp_packet(data)

print(TAB_1 + ’ICMP Packet:’)

print(TAB_2 + ’Type: {},

Code: {},

Checksum: {}’.format(

icmp_type, code, checksum))

print(TAB_2 + ’Data:’)

print(format_multi_line(

DATA_TAB_3, data))

Other

else:

print(TAB_1 + ’Data:’)

print(format_multi_line(

DATA_TAB_2, data))

UDP

A UDP segment structure is shown in Figure 6.16. It consists of a source
(2 bytes) and destination (2 bytes) port, length (2 bytes), and checksum (2
bytes).

9. According to the diagram, we can unpack the UDP segment using the
following code:

87

6.2.0.0

Figure 6.16: UDP Segment Structure

Unpack UDP segment

def udp_segment(data):

src_port, dest_port, length =

struct.unpack(’! H H H 2x’, data[:8])

return src_port, dest_port, length, data[8:]

10. Update turtle_sniffer() function to print UDP headers.

def turtle_sniffer():

(...)

while True:

(...)

8 for IPv4

if eth_proto == 8:

(...)

Check protocols

#***********************
ICMP

if proto == 1:

(...)

88

Packet Analyzer

UDP

elif proto == 17:

src_port, dest_port,

length, data =

udp_segment(data)

print(TAB_1 + ’UDP Segment:’)

print(TAB_2 + ’Source Port: {},

Destination Port: {},

Length: {}’.format(

src_port, dest_port,

length))

print(TAB_2 + ’Data:’)

print(format_multi_line(

DATA_TAB_3, data))

Other

else:

(...)

TCP

A TCP segment structure is shown in Figure 6.17. We will be parsing
source (2 bytes) and destination (2 bytes) port, sequence (4 bytes), ac-
knowledgement number (4 bytes), offset (4 bits) and TCP flags (1 byte).

11. According to the diagram, we can unpack the TCP segment using the
following code:

89

6.2.0.0

Figure 6.17: TCP Segment Structure

Unpack TCP segment

def tcp_segment(data):

(src_port, dest_port,

sequence, acknowledgment,

offset_reserved_flags) =

struct.unpack(’! H H L L H’, data[:14])

offset = (offset_reserved_flags >> 12) * 4

flag_urg = (offset_reserved_flags & 32) >> 5

flag_ack = (offset_reserved_flags & 16) >> 4

flag_psh = (offset_reserved_flags & 8) >> 3

flag_rst = (offset_reserved_flags & 4) >> 2

flag_syn = (offset_reserved_flags & 2) >> 1

flag_fin = offset_reserved_flags & 1

return src_port, dest_port, sequence,

acknowledgment,

offset_reserved_flags,

flag_urg, flag_ack, flag_psh,

flag_rst, flag_syn, flag_fin,

data[offset:]

90

Packet Analyzer

12. Update turtle_sniffer() function to print TCP headers.

def turtle_sniffer():

(...)

while True:

(...)

8 for IPv4

if eth_proto == 8:

(...)

Check protocols

#***********************
ICMP

if proto == 1:

(...)

UDP

elif proto == 17:

(...)

91

6.2.0.0

TCP

elif proto == 6:

src_port, dest_port, sequence,

acknowledgment,

offset_reserved_flags,

flag_urg, flag_ack, flag_psh,

flag_rst, flag_syn, flag_fin,

data = tcp_segment(data)

print(TAB_1 + ’TCP Segment:’)

print(TAB_2 + ’Source Port: {},

Destination Port: {}’.format(

src_port, dest_port))

print(TAB_2 + ’Sequence: {},

Acknowledgment: {}’.format(

sequence, acknowledgment))

print(TAB_2 + ’Flags:’)

print(TAB_3 + ’URG: {}, ACK: {},

PSH: {}, RST: {}, SYN: {},

FIN: {}’.format(flag_urg,

flag_ack, flag_psh,

flag_rst, flag_syn,

flag_fin))

print(TAB_2 + ’Data:’)

print(format_multi_line(

DATA_TAB_3, data))

92

Packet Analyzer

Other

else:

(...)

Running the script you will get something similar to Figure 6.18

Figure 6.18: Turtle Sniffer - Frames + Packets + Segments Displayed

93

A
Basic Sniffer Code

Basic Sniffer (Linux)� �
import socket

Create PACKET raw socket

s = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket

.ntohs(3))

5

Capture data

while True:

print(s.recvfrom(65565))� �
Listing A.1: Basic Sniffer (Linux)

Basic Sniffer Code

Basic Sniffer (Windows)� �
from scapy.all import *

List available interfaces

IFACES.show()

5

Get interface number

number = input("NIC #> ")

Get interface name by index

10 iface = IFACES.dev_from_index(int(number))

Create a level two socket

socket = conf.L2socket(iface=iface)

15 while True:

packet_raw = socket.recv_raw() # raw data

print(packet_raw[1])� �
Listing A.2: Basic Sniffer (Windows)

95

B
Turtle Sniffer Code

Turtle Sniffer (Linux)� �
import socket
import struct
import textwrap

5 TAB_1 = ’ - ’
TAB_2 = ’ - ’
TAB_3 = ’ - ’
TAB_4 = ’ - ’

10 DATA_TAB_1 = ’ ’
DATA_TAB_2 = ’ ’
DATA_TAB_3 = ’ ’
DATA_TAB_4 = ’ ’

15 def turtle_sniffer():
Get host
host = socket.gethostbyname(socket.gethostname())
print("IP: {}".format(host))

20 # Linux Version
conn = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(3))

while True:
raw_data, addr = conn.recvfrom(65535)

25 dest_mac, src_mac, eth_proto, data = ethernet_frame(raw_data)
print("\nEthernet Frame:")
print(TAB_1 + "Destination: {}, Source: {}, Protocol: {}".format(

dest_mac, src_mac, eth_proto))

8 for IPv4
30 if eth_proto == 8:

Turtle Sniffer Code

(version, header_length, ttl, proto, src, target, data) =
ipv4_packet(data)

print(TAB_1 + ’IPv4 Packet:’)
print(TAB_2 + ’Version: {}, Header Length: {}, TTL: {}’.format(

version, header_length, ttl))
print(TAB_2 + ’Protocol: {}, Source: {}, Target: {}’.format(

proto, src, target))
35

Check protocols
#***********************
ICMP
if proto == 1:

40 icmp_type, code, checksum, data = icmp_packet(data)
print(TAB_1 + ’ICMP Packet:’)
print(TAB_2 + ’Type: {}, Code: {}, Checksum: {}’.format(

icmp_type, code, checksum))
print(TAB_2 + ’Data:’)
print(format_multi_line(DATA_TAB_3, data))

45
TCP
elif proto == 6:

src_port, dest_port, sequence, acknowledgment,
offset_reserved_flags, \

flag_urg, flag_ack, flag_psh, flag_rst, flag_syn, flag_fin,
data = tcp_segment(data)

50 print(TAB_1 + ’TCP Segment:’)
print(TAB_2 + ’Source Port: {}, Destination Port: {}’.format

(src_port, dest_port))
print(TAB_2 + ’Sequence: {}, Acknowledgment: {}’.format(

sequence, acknowledgment))
print(TAB_2 + ’Flags:’)
print(TAB_3 + ’URG: {}, ACK: {}, PSH: {}, RST: {}, SYN: {},

FIN: {}’.format(flag_urg, flag_ack, flag_psh, flag_rst
, flag_syn, flag_fin))

55 print(TAB_2 + ’Data:’)
print(format_multi_line(DATA_TAB_3, data))

UDP
elif proto == 17:

60 src_port, dest_port, length, data = udp_segment(data)
print(TAB_1 + ’UDP Segment:’)
print(TAB_2 + ’Source Port: {}, Destination Port: {}, Length

: {}’.format(src_port, dest_port, length))
print(TAB_2 + ’Data:’)
print(format_multi_line(DATA_TAB_3, data))

65
Other
else:

print(TAB_1 + ’Data:’)
print(format_multi_line(DATA_TAB_2, data))

70
Unpack ethernet frame
def ethernet_frame(data):

dest_mac, src_mac, proto = struct.unpack(’! 6s 6s H’, data[:14])
return get_mac_addr(dest_mac), get_mac_addr(src_mac), socket.htons(proto

), data[14:]
75

97

B.0.0.0

Return properly formatted MAC address (ie AA:BB:CC:DD:EE:FF)
def get_mac_addr(bytes_addr):

bytes_str = map(’{:02X}’.format, bytes_addr)
return ’:’.join(bytes_str).upper()

80
Unpack IPv4 Packet
def ipv4_packet(data):

version_header_len = data[0]
version = version_header_len >> 4

85 header_len = (version_header_len & 15) * 4
Start unpacking header
ttl, proto, src, target = struct.unpack(’! 8x B B 2x 4s 4s’, data[:20])
return version, header_len, ttl, proto, ipv4(src), ipv4(target), data[

header_len:]

90 # Return properly format IPv4 address
def ipv4(addr):

return ’.’.join(map(str, addr))

Unpack ICMP packet
95 def icmp_packet(data):

icmp_type, code, checksum = struct.unpack(’! B B H’, data[:4])
return icmp_type, code, checksum, data[4:]

Unpack TCP segment
100 def tcp_segment(data):

(src_port, dest_port, sequence, acknowledgment, offset_reserved_flags) =
struct.unpack(’! H H L L H’, data[:14])

offset = (offset_reserved_flags >> 12) * 4
flag_urg = (offset_reserved_flags & 32) >> 5
flag_ack = (offset_reserved_flags & 16) >> 4

105 flag_psh = (offset_reserved_flags & 8) >> 3
flag_rst = (offset_reserved_flags & 4) >> 2
flag_syn = (offset_reserved_flags & 2) >> 1
flag_fin = offset_reserved_flags & 1

110 return src_port, dest_port, sequence, acknowledgment,
offset_reserved_flags, \
flag_urg, flag_ack, flag_psh, flag_rst, flag_syn, flag_fin, data[

offset:]

Unpack UDP segment
def udp_segment(data):

115 src_port, dest_port, length = struct.unpack(’! H H H 2x’, data[:8])
return src_port, dest_port, length, data[8:]

Format data display
def format_multi_line(prefix, string, size=80):

120 size -= len(prefix)
if isinstance(string, bytes):

string = ’’.join(r’\x{:02x}’.format(byte) for byte in string)
if size % 2:

size -= 1
125 return ’\n’.join([prefix + line for line in textwrap.wrap(string, size)

])

98

Turtle Sniffer Code

if __name__ == ’__main__’:
turtle_sniffer()� �

Listing B.1: Turtle Sniffer (Linux)

99

B.0.0.0

Turtle Sniffer (Windows)� �
from scapy.all import *
import struct
import textwrap

5 TAB_1 = ’ - ’
TAB_2 = ’ - ’
TAB_3 = ’ - ’
TAB_4 = ’ - ’

10 DATA_TAB_1 = ’ ’
DATA_TAB_2 = ’ ’
DATA_TAB_3 = ’ ’
DATA_TAB_4 = ’ ’

15 def turtle_sniffer():
Show interfaces available
IFACES.show()

number = input("Network Interface #: ")
20 iface = IFACES.dev_from_index(int(number))

Create a level two socket
socket = conf.L2socket(iface=iface)

25 try:
while True:

socket is now an ethernet socket
packet_raw = socket.recv_raw() # raw data

30
dest_mac, src_mac, eth_proto, data = ethernet_frame(packet_raw

[1])
print("\nEthernet Frame:")
print(TAB_1 + "Destination: {}, Source: {}, Protocol: {}".format

(dest_mac, src_mac, eth_proto))

35 # 8 for IPv4
if eth_proto == 8:

(version, header_length, ttl, proto, src, target, data) =
ipv4_packet(data)

print(TAB_1 + ’IPv4 Packet:’)
print(TAB_2 + ’Version: {}, Header Length: {}, TTL: {}’.

format(version, header_length, ttl))
40 print(TAB_2 + ’Protocol: {}, Source: {}, Target: {}’.format(

proto, src, target))

Check protocols

ICMP

45 if proto == 1:
icmp_type, code, checksum, data = icmp_packet(data)
print(TAB_1 + ’ICMP Packet:’)
print(TAB_2 + ’Type: {}, Code: {}, Checksum: {}’.format(

icmp_type, code, checksum))
print(TAB_2 + ’Data:’)

100

Turtle Sniffer Code

50 print(format_multi_line(DATA_TAB_3, data))

TCP
elif proto == 6:

src_port, dest_port, sequence, acknowledgment,
offset_reserved_flags, \

55 flag_urg, flag_ack, flag_psh, flag_rst, flag_syn,
flag_fin, data = tcp_segment(data)

print(TAB_1 + ’TCP Segment:’)
print(TAB_2 + ’Source Port: {}, Destination Port: {}’.

format(src_port, dest_port))
print(TAB_2 + ’Sequence: {}, Acknowledgment: {}’.format(

sequence, acknowledgment))
print(TAB_2 + ’Flags:’)

60 print(TAB_3 + ’URG: {}, ACK: {}, PSH: {}, RST: {}, SYN:
{}, FIN: {}’.format(flag_urg, flag_ack,

flag_psh, flag_rst,
flag_syn, flag_fin))

print(TAB_2 + ’Data:’)
print(format_multi_line(DATA_TAB_3, data))

65
UDP
elif proto == 17:

src_port, dest_port, length, data = udp_segment(data)
print(TAB_1 + ’UDP Segment:’)

70 print(TAB_2 + ’Source Port: {}, Destination Port: {},
Length: {}’.format(src_port, dest_port, length))

print(TAB_2 + ’Data:’)
print(format_multi_line(DATA_TAB_3, data))

Other
75 else:

print(TAB_1 + ’Data:’)
print(format_multi_line(DATA_TAB_2, data))

except KeyboardInterrupt:
80 print("turtle> Bye.")

Unpack ethernet frame
def ethernet_frame(data):

try:
85 dest_mac, src_mac, proto = struct.unpack(’! 6s 6s H’, data[:14])

return get_mac_addr(dest_mac), get_mac_addr(src_mac), socket.htons(
proto), data[14:]

except:
dest_mac = ""
src_mac = ""

90 proto = ""
return dest_mac, src_mac, proto, ""

Return properly formatted MAC address (ie AA:BB:CC:DD:EE:FF)
def get_mac_addr(bytes_addr):

95 bytes_str = map(’{:02X}’.format, bytes_addr)
return ’:’.join(bytes_str).upper()

Unpack IPv4 Packet
def ipv4_packet(data):

101

6.0.0.0

100 version_header_len = data[0]
version = version_header_len >> 4
header_len = (version_header_len & 15) * 4
Start unpacking header
ttl, proto, src, target = struct.unpack(’! 8x B B 2x 4s 4s’, data[:20])

105 return version, header_len, ttl, proto, ipv4(src), ipv4(target), data[
header_len:]

Return properly format IPv4 address
def ipv4(addr):

return ’.’.join(map(str, addr))
110

Unpack ICMP packet
def icmp_packet(data):

icmp_type, code, checksum = struct.unpack(’! B B H’, data[:4])
return icmp_type, code, checksum, data[4:]

115
Unpack TCP segment
def tcp_segment(data):

(src_port, dest_port, sequence, acknowledgment, offset_reserved_flags) =
struct.unpack(’! H H L L H’, data[:14])

offset = (offset_reserved_flags >> 12) * 4
120 flag_urg = (offset_reserved_flags & 32) >> 5

flag_ack = (offset_reserved_flags & 16) >> 4
flag_psh = (offset_reserved_flags & 8) >> 3
flag_rst = (offset_reserved_flags & 4) >> 2
flag_syn = (offset_reserved_flags & 2) >> 1

125 flag_fin = offset_reserved_flags & 1

return src_port, dest_port, sequence, acknowledgment,
offset_reserved_flags, \
flag_urg, flag_ack, flag_psh, flag_rst, flag_syn, flag_fin, data[

offset:]

130 # Unpack UDP segment
def udp_segment(data):

src_port, dest_port, length = struct.unpack(’! H H H 2x’, data[:8])
return src_port, dest_port, length, data[8:]

135 # Format data display
def format_multi_line(prefix, string, size=80):

size -= len(prefix)
if isinstance(string, bytes):

string = ’’.join(r’\x{:02x}’.format(byte) for byte in string)
140 if size % 2:

size -= 1
return ’\n’.join([prefix + line for line in textwrap.wrap(string, size)

])

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 if __name__ == "__main__":

turtle_sniffer()� �
Listing B.2: Turtle Sniffer (Windows)

102

	Python Program Concepts
	Environment Setup
	Getting & Installing Python
	Running Python
	Python Fundamental Concepts

	Python for Network Engineers
	Encoding & Decoding
	Shifting Bytes
	Struct Package
	Other Functions

	Python Socket Vocabulary
	Creating Sockets
	Sending Data
	Receiving Data
	Socket Objects
	Socket Services

	Programming with Sockets
	Working with UDP sockets
	Working with TCP sockets

	Concurrency
	Multithreading Server
	Event Driven Server

	Packet Analyzer
	Basic Sniffer
	Turtle Sniffer

	Basic Sniffer Code
	Turtle Sniffer Code

